PXIe-4145 Specifications

Contents

PXIe-4145 Specifications.	3
---------------------------	---

PXIe-4145 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

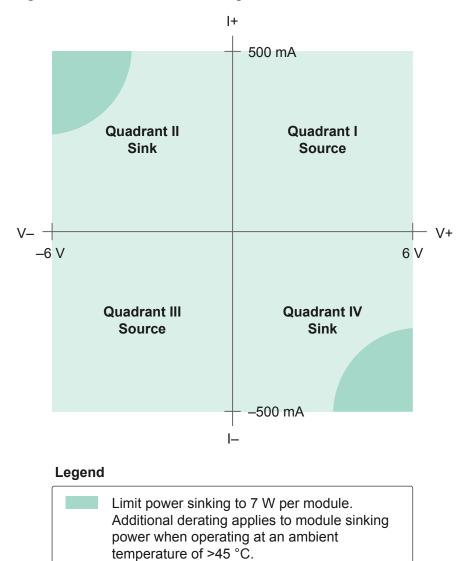
Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are Warranted unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.


- Ambient temperature¹ of 23 °C ± 5 °C
- Calibration interval of 1 year
- 30 minutes warm-up time
- Self-calibration performed within the last 24 hours
- niDCPower Aperture Time property or NIDCPOWER_ATTR_APERTURE_TIME attribute set to 2 power-line cycles (PLC)
- Fans set to the highest setting if the PXI Express chassis has multiple fan speed settings

¹ The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).

Device Capabilities

The following table and figure illustrate the voltage and the current source and sink ranges of the PXIe-4145.

Channels	DC Voltage Ranges	DC Current Source and Sink Ranges
0 through 3 [*]	±6 V	 10 μA 100 μA 1 mA 10 mA 100 mA 500 mA
* Channels are isolated	from earth ground but share a comm	ion LO.

Figure 1. PXIe-4145 Quadrant Diagram, All Channels

SMU Specifications

Voltage Programming and Measurement Accuracy/Resolution

 Table 2. Voltage Programming and Measurement Accuracy/Resolution

Range	Resolution and noise (0.1 Hz to	1 Year Accuracy (23 voltage + offset) ²	°C ± 5 °C) ± (% of	Tempco ± (% of voltage +
	10 Hz)	T _{cal} ±5°C	T _{cal} ±1°C	offset)/°C, 0 °C to 55 °C
6 V	6 μV	$0.015\% + 600 \ \mu V$	0.013% + 200 μ V	$0.0005\% + 1 \mu V$

Related tasks:

<u>Calculating SMU Resolution</u>

Related reference:

<u>Additional Specifications</u>

Current

Range	Resolution and noise (0.1 Hz to	1 Year Accuracy (23 current + offset)	°C ± 5 °C) ± (% of	Tempco ± (% of current +
	10 Hz)	T _{cal} ±5°C	T _{cal} ±1°C	offset)/°C, 0 °C to 55 °C
10 μΑ	15 pA	0.03% + 3 nA	0.03% + 1.2 nA	0.002% + 20 pA
100 μA	100 pA	0.03% + 25 nA	0.03% + 6.0 nA	0.002% + 200 pA
1 mA	1 nA	0.03% + 250 nA	0.03% + 60 nA	0.002% + 2.0 nA
10 mA	10 nA	0.03% + 2.5 μA	0.03% + 600 nA	0.002% + 20 nA
100 mA	100 nA	0.03% + 25 μA	0.03% + 6.0 μA	0.002% + 200 nA
500 mA	500 nA	0.1% + 125 μA	0.1% + 30 μA	0.008% + 1 μA

Related tasks:

<u>Calculating SMU Resolution</u>

² Accuracy is specified for no load output configurations. Refer to Load Regulation and Remote Sense in the **Additional Specifications** section for additional accuracy derating and conditions.

Related reference:

Additional Specifications

Output Resistance Programming Accuracy/Resolution, Typical

Current limit range	Programmable resistance range	Resolution	Accuracy ± (% of resistance setting), T _{cal} ± 5 °C
10 µA	± 50 kΩ	1.0 Ω	0.04% + 260 mΩ
100 µA	± 5 kΩ	100 mΩ	0.04% + 35 mΩ
1 mA	± 500 Ω	10 mΩ	0.04% + 13 mΩ
10 mA	± 50 Ω	1.0 mΩ	0.04% + 10 mΩ
100 mA	±5Ω	100 μΩ	0.04% + 10 mΩ
500 mA	±1Ω	20 μΩ	0.12% + 10 mΩ

Table 4. Output Resistance Programming Accuracy/Resolution, Typical

Calculating SMU Resolution

Refer to the following figure as you complete the following steps to derive a resolution in absolute units:

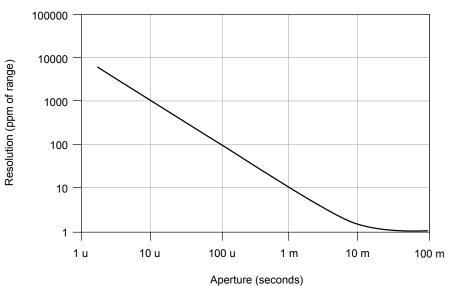


Figure 2. Noise and Resolution versus Measurement Aperture, Typical

- 1. Select a voltage or current range.
- 2. For a given aperture time, find the corresponding resolution.
- 3. To convert resolution from ppm of range to absolute units, multiply resolution in ppm of range by the selected range.

Example of Calculating SMU Resolution

The PXIe-4145 has a resolution of 100 ppm when set to a 100 μ s aperture time. In the 6 V range, resolution can be calculated by multiplying 6 V by 100 ppm, as shown in the following equation:

 $6 V * 100 ppm = 6 V * 100 * 1 \times 10^{-6} = 600 \mu V$

Likewise, in the 10 mA range, resolution can be calculated by multiplying 10 mA by 100 ppm, as shown in the following equation:

10 mA * 100 ppm = 10 mA * 100 * 1×10^{-6} = 1 μ A

Sinking Power vs. Ambient Temperature Derating

The following figure illustrates sinking power derating as a function of ambient temperature.

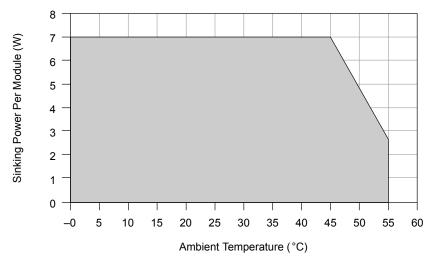


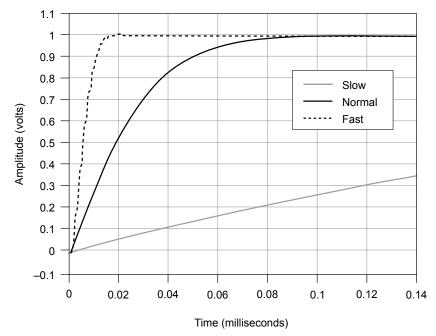
Figure 3. Sinking Power vs Ambient Temperature Derating

Additional Specifications

Settling time ³	<100 µs to settle to 0.1% of voltage step, device configured for fast transient response, typical
Transient response	<100 µs to recover within ±20 mV after a load current change from 10% to 90% of range, device configured for fast transient response, typical
Wideband source noise ⁴	1.5 mV RMS, typical <20 mV _{pk-pk} , typical
Cable guard output impedance	10 kΩ, typical

Remote sense	
Voltage	Add 0.1% of LO lead drop to voltage accuracy specification
Current	No additional error due to lead drop
Maximum lead drop	Up to 1 V drop per lead for V _{out} ≤ 5 V. For V _{out} > 5 V, keep sum of V _{out} and total lead drop below 7 V

Load regulation	
Voltage	10 μV at connector pins per mA of output load when using local sense, typical
Current	20 pA + (1 ppm of range per volt of output change) when using local sense, typical


 3 Current limit set to ≥ 1 mA and $\geq 10\%$ of the selected current limit range.

⁴ 20 Hz to 20 MHz bandwidth. PXIe-4145 configured for normal transient response.

Isolation voltage, Channel-to-earth ground⁵	60 VDC, CAT I, verified by dielectric withstand test, 5 s, continuous, characteristic
Absolute maximum voltage between any terminal and LO	20 VDC, continuous

The following figures illustrate the effect of the transient response setting on the step response of the PXIe-4145 for different loads.

Figure 4. 1 mA Range No Load Step Response, Typical

⁵ Channels are isolated from earth ground but share a common LO.

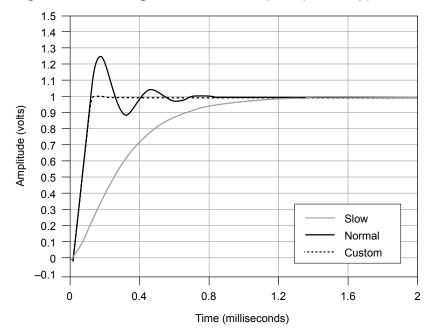


Figure 5. 1 mA Range, 100 nF Load Step Response, Typical

Supplemental Specifications

Measurement and Update Timing

Available sample rates ⁶	(600 kS/s)/N
where	
20	
• N = 6, 7, 8, 2^{20}	
 N = 6, 7, 8, 2²⁰ S is samples 	

⁶ When source-measuring, both the NI-DCPower Source Delay and Aperture Time properties affect the sampling rate. When taking a measure record, only the Aperture Time property affects the sampling rate.

Maximum measure rate to host ⁷	600,000 S/s per channel, continuous
Maximum source update rate ⁸	
Sequence length <300 steps per iteration	100,000 updates/s per channel
Sequence length ≥300 steps per iteration	100,000 updates/s per board
Input trigger to	
Source event delay	5 μs
Source event jitter	1.7 μs
Measure event jitter	1.7 μs

Triggers

Input triggers	
Types	Start
	Source
	Sequence Advance
	Measure
Sources (PXI trigger lines 0 to 7)	
Polarity	Configurable
Minimum pulse width	100 ns, nominal
Destinations ⁹ (PXI trigger lines 0 to 7)	

⁷ Load dependent settling time is not included. Normal DC noise rejection is used.

⁸ As the source delay is adjusted or if advanced sequencing is used, maximum source update rates may vary.

Polarity	Active high (not configurable)	
Minimum pulse width	>200 ns, nominal	
Output triggers (events)		
Туреѕ	Source Complete	
	Sequence Iteration Complete	
	Sequence Engine Done	
	Measure Complete	
Destinations (PXI trigger lines 0 to 7)		
Polarity	Configurable	
Pulse width	Configurable between 250 ns and 1.6 μs, nominal	

Note Pulse widths and logic levels are compliant with PXI Express Hardware Specification Revision 1.0 ECN 1.

Calibration Interval

Recommended calibration interval	1 year

Physical

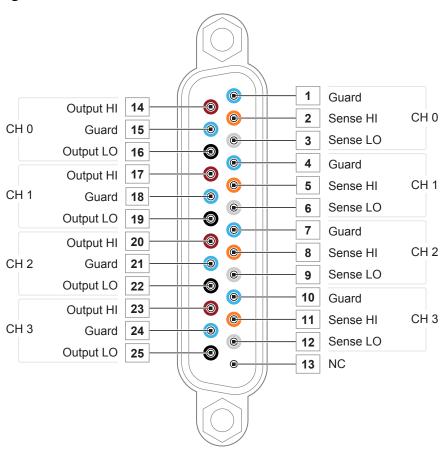
Dimensions	3U, one-slot, PXI Express/CompactPCI Express
	module

⁹ Input triggers can come from any source (PXI trigger or software trigger) and be exported to any PXI trigger line. This allows for easier multi-board synchronization regardless of the trigger source.

	2.0 cm × 13.0 cm × 21.6 cm (0.8 in. × 5.1 in. × 8.5 in.)
Weight	408 g (14.39 oz)
Front panel connectors	25-position D-SUB, male

Power Requirements

PXI Express power requirement	2.1 A from the 12 V rail and 2.9 A from the 3.3 V rail


Environmental Characteristics

Temperature	
0 °C to 55 °C	
-40 °C to 70 °C	
10% to 70%, noncondensing. Derate 1.3% per °C above 40 °C.	
5% to 95%, noncondensing	
2	
2,000 m (800 mbar) (at 25 °C ambient temperature)	
5 Hz to 500 Hz, 0.3 g RMS	

Non-operating vibration	5 Hz to 500 Hz, 2.4 g RMS
Operating shock	30 g, half-sine, 11 ms pulse

PXIe-4145 Pinout

The following figure shows the terminals on the PXIe-4145 connector.

Figure 6. PXIe-4145 Connector Pinout

Table 5. Signal Descriptions

Signal Name	Description
CH <03> Output HI	HI force terminal connected to channel power stage (generates and/or dissipates power). Positive polarity is defined as voltage measured on HI > LO.

Signal Name	Description
CH <03> Guard	Buffered output that follows the voltage of the HI force terminal. Used to drive shield conductors surrounding HI force and Sense HI conductors to minimize effects of leakage and capacitance on low level currents.
CH <03> Output LO	LO force terminal connected to channel power stage (generates and/or dissipates power). Positive polarity is defined as voltage measured on HI > LO.
CH <03> Sense HI	Voltage remote sense input terminals. Used
CH <03> Sense LO	to compensate for I * R voltage drops in cable leads, connectors, and switches.
NC	No Connect.

Note PXIe-4145 channels are bank-isolated from earth ground, but also share a common LO.