PXIe-4140 Specifications

Contents

DVI 44.40.0 'C' 1'	_
2810_11111 Spacifications	- 4
PXIe-4140 Specifications	

PXIe-4140 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are **Warranted** unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature¹ of 23 °C ± 5 °C
- Calibration interval of 1 year
- 30 minutes warm-up time
- Self-calibration performed within the last 24 hours
- niDCPower Aperture Time property or NIDCPOWER_ATTR_APERTURE_TIME attribute set to 2 power-line cycles (PLC)
- Fans set to the highest setting if the PXI Express chassis has multiple fan speed settings

¹ The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).

Device Capabilities

The following table and figure illustrate the voltage and the current source and sink ranges of the PXIe-4140.

Table 1. Current Source and Sink Ranges

Channels	DC Voltage Ranges	DC Current Source and Sink Ranges
0 through 3*	±10 V	 10 μA 100 μA 1 mA 10 mA 100 mA
* Channels are isolated from earth ground but share a common LO.		

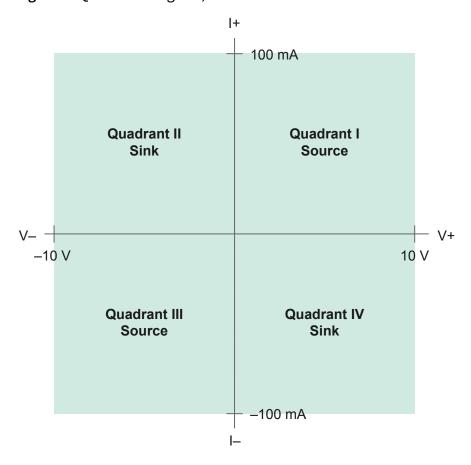


Figure 1. Quadrant Diagram, All Channels

SMU Specifications

Voltage Programming and Measurement Accuracy/Resolution

Table 2. Voltage Programming and Measurement Accuracy/Resolution

Range	(0.1 Hz to 10 Hz)	1 Year Accuracy (23 °C ± 5 °C) ± (% of voltage + offset), ² T _{cal} ±5 °C	
10 V	100 μV	0.1% + 5.0 mV	0.0005% + 1 μV

Related tasks:

- Calculating SMU Resolution
- ² Accuracy is specified for no load output configurations. Refer to Load Regulation and Remote Sense in the **Additional Specifications** section for additional accuracy derating and conditions.

Related reference:

Additional Specifications

Current

Table 3. Current Programming and Measurement Accuracy/Resolution

Range	Resolution and noise (0.1 Hz to 10 Hz)		Tempco ± (% of current + offset)/°C, 0 °C to 55 °C
10 μΑ	100 pA	0.1% + 5.0 nA	0.002% + 10 pA
100 μΑ	1 nA	0.1% + 50 nA	0.002% + 100 pA
1 mA	10 nA	0.1% + 500 nA	0.002% + 1.0 nA
10 mA	100 nA	0.1% + 5.0 μΑ	0.002% + 10 nA
100 mA	1 μΑ	0.1% + 50 μΑ	0.002% + 100 nA

Related tasks:

Calculating SMU Resolution

Related reference:

Additional Specifications

Calculating SMU Resolution

Refer to the following figure as you complete the following steps to derive a resolution in absolute units:

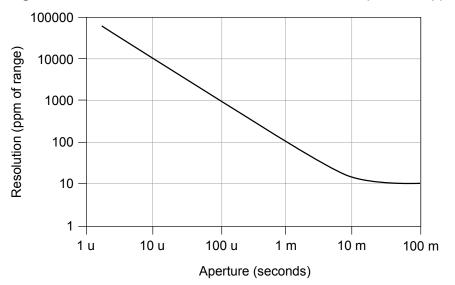


Figure 2. Noise and Resolution versus Measurement Aperture, Typical

- 1. Select a voltage or current range.
- 2. For a given aperture time, find the corresponding resolution.
- 3. To convert resolution from ppm of range to absolute units, multiply resolution in ppm of range by the selected range.

Example of Calculating SMU Resolution

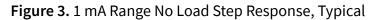
The PXIe-4140 has a resolution of 1,000 ppm when set to a 100 µs aperture time. In the 10 V range, resolution can be calculated by multiplying 10 V by 1,000 ppm, as shown in the following equation:

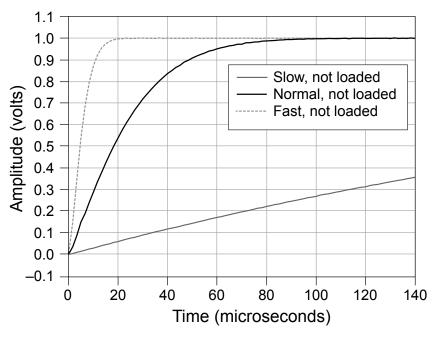
$$10 \text{ V} * 1,000 \text{ ppm} = 10 \text{ V} * 1,000 * 1 \times 10^{-6} = 10 \text{ mV}$$

Likewise, in the 100 mA range, resolution can be calculated by multiplying 100 mA by 1,000 ppm, as shown in the following equation:

100 mA * 1,000 ppm = 100 mA * 1,000 *
$$1 \times 10^{-6}$$
 = 100 μ A

Additional Specifications


Settling time ³	<100 µs to settle to 0.1% of voltage step, device configured for fast transient response, typical	
Transient response	<100 µs to recover within ±20 mV after a load current change from 10% to 90% of range, device configured for fast transient response, typical	
Wideband source noise ⁴	1.5 mV RMS, typical	
	<20 mV _{pk-pk} , typical	
Cable guard output impedance	10 kΩ, typical	
Remote sense		
Voltage	Add 0.1% of LO lead drop to voltage accuracy specification	
Current	Add 0.02% of range per volt of total HI and LO lead drop to current accuracy specification	
Maximum lead drop	Up to 1 V drop per lead	
Load regulation		
Voltage	$10~\mu\text{V}$ at connector pins per mA of output load when using local sense, typical	
Current	20 pA + (10 ppm of range per volt of output change) when using local sense, typical	


 $^{^3\,}$ Current limit set to $\geq\!1$ mA and $\geq\!10\%$ of the selected current limit range.

⁴ 20 Hz to 20 MHz bandwidth. PXIe-4140 configured for normal transient response.

Isolation voltage, channel-to-earth ground ⁵	60 VDC, CAT I, verified by dielectric withstand test, 5 s, continuous
Absolute maximum voltage between any terminal and LO	20 V DC, continuous

The following figures illustrate the effect of the transient response setting on the step response of the PXIe-4140 for different loads.

⁵ Channels are isolated from earth ground but share a common LO.

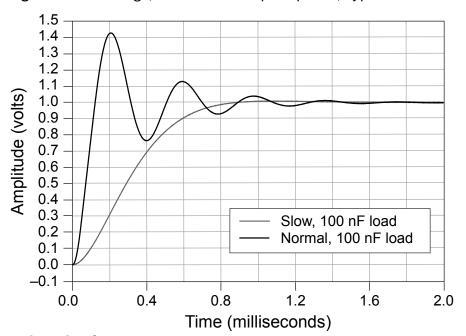


Figure 4. 1 mA Range, 100 nF Load Step Response, Typical

Related reference:

- Voltage Programming and Measurement Accuracy/Resolution
- Current

S is samples

Supplemental Specifications

Measurement and Update Timing

Available sample rates ⁶	(600 kS/s)/N
where	
$N = 6, 7, 8, \dots 2^{20}$	

⁶ When source-measuring, both the NI-DCPower Source Delay and Aperture Time properties affect the sampling rate. When taking a measure record, only the Aperture Time property affects the sampling rate.

Sample rate accuracy	±50 ppm	
Maximum measure rate to host ⁷	600,000 S/s per channel, continuous	
Maximum source update rate ⁸	'	
Sequence length <300 steps per iteration	100,000 updates/s per channel	
Sequence length ≥300 steps per iteration	100,000 updates/s per board	
Input trigger to		
Source event delay	5 μs	
Source event jitter	1.7 μs	
Measure event jitter	1.7 μs	

Triggers

Input triggers		
Types	Start	
	Source	
	Sequence Advance	
	Measure	
Sources (PXI trigger lines 0 to 7)		
Polarity	Configurable	

 $^{^{7}\,}$ Load dependent settling time is not included. Normal DC noise rejection is used.

⁸ As the source delay is adjusted or if advanced sequencing is used, maximum source update rates may vary.

Minimum pulse width	100 ns, nominal	
Destinations ⁹ (PXI trigger lines 0 to 7)		
Polarity	Active high (not configurable)	
Minimum pulse width	>200 ns, nominal	
Output triggers (events)		
Types	Source Complete	
	Sequence Iteration Complete	
	Sequence Engine Done	
	Measure Complete	
Destinations (PXI trigger lines 0 to 7)		
Polarity	Configurable	
Pulse width	Configurable between 250 ns and 1.6 μs, nominal	

Note Pulse widths and logic levels are compliant with **PXI Express Hardware Specification Revision 1.0 ECN 1**.

Calibration Interval

Recommended calibration interval	1 year

⁹ Input triggers can come from any source (PXI trigger or software trigger) and be exported to any PXI trigger line. This allows for easier multi-board synchronization regardless of the trigger source.

Physical

Dimensions	3U, one-slot, PXI Express/CompactPCI Express module 2.0 cm × 13.0 cm × 21.6 cm (0.8 in. × 5.1 in. × 8.5 in.)
Weight	425 g (14.99 oz)
Front panel connectors	25-position D-SUB, male

Power Requirements

·	600 mA from the 12 V rail and 350 mA from the 3.3 V rail

Environmental Characteristics

Temperature		
Operating	0 °C to 55 °C	
Storage	-40 °C to 70 °C	
Humidity		
Operating	10% to 70%, noncondensing. Derate 1.3% per °C above 40 °C	
Storage	5% to 95%, noncondensing	
Pollution Degree	2	

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)	
Shock and Vibration		
Operating vibration	5 Hz to 500 Hz, 0.3 g RMS	
Non-operating vibration	5 Hz to 500 Hz, 2.4 g RMS	
Operating shock	30 g, half-sine, 11 ms pulse	

PXIe-4140 Pinout

The following figure shows the terminals on the PXIe-4140 connector.

1 Guard 14 Output HI 2 CH 0 Sense HI CH 0 Guard 15 Sense LO 3 Output LO 16 4 Guard Output HI 17 CH 1 Sense HI CH 1 Guard 18 Sense LO 6 Output LO 19 1 Guard Output HI 20 CH 2 Sense HI CH 2 Guard 21 9 Sense LO Output LO 22 1 10 Guard Output HI 23 CH 3 11 Sense HI CH 3 Guard 24 Sense LO 12 Output LO 25 **①** NC 13

Figure 5. PXIe-4140 Connector Pinout

Table 4. Signal Descriptions

Signal Name	Description
CH <03> Output HI	HI force terminal connected to channel power stage (generates and/or dissipates power). Positive polarity is defined as voltage measured on HI > LO.
CH <03> Guard	Buffered output that follows the voltage of the HI force terminal. Used to drive shield conductors surrounding HI force and Sense HI conductors to minimize effects of leakage and capacitance on low level currents.
CH <03> Output LO	LO force terminal connected to channel power stage (generates and/or dissipates power). Positive polarity is defined as voltage measured on HI > LO.
CH <03> Sense HI	Voltage remote sense input terminals. Used to compensate for I * R voltage drops in cable leads, connectors, and switches.
CH <03> Sense LO	
NC	No Connect.

Note PXIe-4140 channels are bank-isolated from earth ground, but also share a common LO.