NI-9253 Specifications

2024-08-07

n

Contents

|--|

NI-9253 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Typical* unless otherwise noted.

Related information:

• <u>Software Support for CompactRIO, CompactDAQ, Single-Board RIO, R Series, and</u> <u>EtherCAT</u>

Conditions

Specifications are valid for the range -40 °C to 70 °C unless otherwise noted.

NI-9253 Safety Voltages

Connect only voltages that are within the following limits:

AI-to-COM and V _{sup} -to-COM	±30 V DC maximum
--	------------------

Channel-to-channel isolation		None
Channel-to-earth ground isolation ¹		
Continuous	250 V RMS, Measurement Category II	
Withstand	3,000 V RMS, verified by a 5 s dielectric withstand test	
Overvoltage protection		±30 V, between any two pins of the connector ²

Caution Do not connect the NI-9253 to signals or use for measurements within Measurement Categories III or IV.

Attention Ne connectez pas le NI-9253 à des signaux et ne l'utilisez pas pour effectuer des mesures dans les catégories de mesure III ou IV.

Measurement Category II is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet, for example, 115 V for U.S. or 230 V for Europe.

Environmental Characteristics

Temperature		
Operating	-40 °C to 70 °C	
Storage	-40 °C to 85 °C	

1. Channels include V_{sup} and COM.

2. Only 1 channel at a time.

Humidity			
Operating	10% RH to 90% RH, noncondensing		
Storage	5% RH to 95% RH, noncondensing		
Ingress protection		IP40	
Pollution Degree		2	
Maximum altitude		5,000 m	

Shock and Vibration

Operating vibration			
Random		5 g RMS, 10 Hz to 500 Hz	
Sinusoidal 5 g, 10 Hz to 500 Hz		5 g, 10 Hz to 500 Hz	
Operating shock	30 g, 11 ms	s half sine; 50 g, 3 ms half sine; 18 shocks at 6 orientations	

Power Requirements

Power consumption from chassis		
Active mode	798 mW maximum	

Sleep mode	48 μW maximum
Thermal dissipation (at 70 °C)	
Active mode	1.5 W maximum
Sleep mode	751 mW maximum

Physical Characteristics

Spring terminal wiring			
Gauge	0.14 mm ² to 1.5 mm ² (26 AWG to 16 AWG) copper conductor wire		
Wire strip length	10 mm (0.394 in.) of insulation stripped from the end		
Temperature rating	90 °C, minimum		
Wires per spring terminal	One wire per spring terminal; two wires per spring terminal using a 2-wire ferrule		
Ferrules			
Single ferrule, uninsulated		0.14 mm ² to 1.5 mm ² (26 AWG to 16 AWG) 10 mm barrel length	
Single ferrule, insulated		0.14 mm ² to 1.0 mm ² (26 AWG to 18 AWG) 12 mm barrel length	
Two-wire ferrule, insulated		2x 0.34 mm ² (2x 22 AWG) 12 mm barrel length	

Connector securement			
Securement type		Screw flanges provided	
Torque for screw flanges		0.2 N · m (1.80 lb · in.)	
Weight	158 g (5.6 oz)		

Input Characteristics

Number of channels		8 analog input channels	
ADC resolution		24 bits	
Type of ADC		Delta-Sigma with analog prefiltering	
Sampling mode		Simultaneous	
Internal master timebase (f _M)		'	
Frequency	12.8 MHz		
Accuracy	±50 ppm maximum		
CompactRIO & CompactDAQ chassis data rate range (f _s)			
Using internal master timebase			
Minimum			10 S/s

NI-9253 Specifications

Maximum		50 kS/s		
Using external master timebase				
٥.7٤ اinimum		78 S/s		
Maximum	51.367 k	1.367 kS/s		
R Series Expansion chassis data rate range (f _s)				
Using internal master timebase				
Minimum		10 S/s		
Maximum		25 kS/s		
Data rate $f_s = \frac{f_l}{128}$				
Overvoltage protection ³ ±30 V		I		
Input resistance (Alx to COM) 79 Ω		2		
Input current range				
Minimum		±21.6 mA		
Typical		±21.9 mA		

3. Only 1 channel at a time.

Scaling coefficients	2615 pA/LSB
Butterworth filter	
Filter order	2nd or 4th order
Cut-off frequencies ⁴	$\frac{f_c \times f_M}{12.8 \text{ MHz}}$
Flatness ⁵	$\frac{f_F \times f_M}{12.8 \text{ MHz}}$
Input delay ⁶	$\left(t_D - 2.31 \mu s\right) \times \left(\frac{12.8 MHz}{f_M}\right) + 2.31 \mu s$
Input delay tolerance	±200 ns

Table 1. Butterworth Filter Cut-off Frequencies and Flatness

Master Timebase Clock (f _M)	Cut off	2nd Order		4th Order		
	Frequencies (f _c)	0.1% Flatness (f _F) at 0.0087 dB	1% Flatness (f _F) at 0.087 dB	0.1% Flatness (f _F) at 0.0087 dB	1% Flatness (f _F) at 0.087 dB	
12.8 MHz	4000 Hz	740 Hz	1445 Hz	1125 Hz	2295 Hz	
	2000 Hz	415 Hz	750 Hz	875 Hz	1210 Hz	
	1000 Hz	215 Hz	380 Hz	430 Hz	615 Hz	
	500 Hz	105 Hz	190 Hz	225 Hz	305 Hz	
	250 Hz	55 Hz	95 Hz	115 Hz	155 Hz	

4. Refer to $\underline{\text{Table 1}}$ for the values of f_c and f_M .

5. Refer to $\underline{\text{Table 1}}$ for the values of f_{F} and $f_{\text{M}}.$

6. Refer to $\underline{\text{Table 2}}$ for the values of t_D and f_M .

	Cut off	2nd Order		4th Order		
Master Timebase Clock (f _M)	Frequencies (f _c)	0.1% Flatness (f _F) at 0.0087 dB	1% Flatness (f _F) at 0.087 dB	0.1% Flatness (f _F) at 0.0087 dB	1% Flatness (f _F) at 0.087 dB	
	125 Hz	25 Hz	45 Hz	60 Hz	75 Hz	

Note The specifications in <u>Table 1</u> scale linearly with the master timebase frequency as indicated by the formulas shown in the <u>Butterworth filter</u> section. For example, on a 2nd Order Butterworth filter, for a master timebase clock of 13.1072 MHz, the cut-off frequency is 4096 Hz and 757.7 Hz of 0.1% Flatness instead of the cut-off frequency of 4000 Hz and 740 Hz of 0.1% Flatness at the 12.8 MHz default internal master timebase clock.

Table 2. Butterworth Filter Input Delay

Master Timebase Clock (f _M)	Cut-off Frequencies (f _c)	2nd Order		4th Order		
		DC Delay (t _D)	Maximum Delay (t _D)	Maximum DC Delay Delay (t _D) (t _D)		
	4000 Hz	98.1 µs	104.7 μs	136.2 µs	158.1 µs	
12.8 MHz	2000 Hz	153.7 μs	167.0 μs	238.8 µs	282.7 μs	
	1000 Hz	266.3 µs	293.0 µs	449.2 μs	538.9 µs	
	500 Hz	491.3 µs	544.5 μs	861.6 µs	1038.1 µs	
	250 Hz	941.4 µs	1047.8 µs	1700.3 µs	2059.8 µs	
	125 Hz	1841.6 µs	2054.3 µs	3347.0 μs	4055.5 μs	

Note The specifications in <u>Table 2</u> scale with the master timebase frequency as indicated by the formulas shown in the <u>Butterworth filter</u> section. For example, a master timebase clock of 13.1072 MHz, the 2nd order Butterworth filter with a 4096 Hz cut-off will have a 98.855 µs input DC delay.

Figure 1. Butterworth Filter Input Delay (4th Order, with 12.8 MHz Timebase, 4000 Hz, 2000 Hz, 1000

Figure 2. Butterworth Filter Input Delay (4th Order, with 12.8 MHz Timebase, 500 Hz, 250 Hz, 125 Hz)

Figure 3. Butterworth Filter Input Delay (2nd Order, with 12.8 MHz Timebase, 4000 Hz, 2000 Hz, 1000 Hz)

Figure 4. Butterworth Filter Input Delay (2nd Order, with 12.8 MHz Timebase, 500 Hz, 250 Hz, 125 Hz)

Comb filter				
Programmable first notch	f _s , f _s /2, f _s /4, f _s /8, f _s /16			
Input delay with comb filter ^{[7] 7}	$\frac{(A+B)}{f_s} + 2.31\mu s$			
Settling time with comb filter ^[7]	$\frac{2(A+B)}{f_s}$ + 2.31 µs			

Table 3. Input Delay with Comb Filter

Variable	Value			
A	2.4 for $f_s = 50000$			
	1.8 for f _s = 14285.71 to 33333.33			
	1 for f _s = 2777.78 to 12500			
	0.6 for f _s = all other output data rates			
В	0 for filter first notch at f _s			
	0.5 for filter first notch at f _s /2			
	1.5 for filter first notch at f _s /4			
	3.5 for filter first notch at f _s /8			

7. Refer to the <u>Table 3</u> table for the values of A and B.

Variable	Value
	7.5 for filter first notch at f _s /16

Table 4. DC Accuracy

Measurement Conditions	Percent of Reading (Gain Error)	Percent of Range ⁸ (Offset Error)
Maximum (-40 °C to 70 °C)	±0.41%	±0.08%
Typical (23 °C, ±5 °C)	±0.14%	±0.02%

Non-linearity	Ion-linearity		12 ppm		
Stability of Accuracy					
Gain drift			12 ppm/°C		
Offset drift	et drift		81 nA/°C		
Passband, -3 dB	and, -3 dB Ret		Refer to the -3 dB graphs in the <i>Filtering</i> section		
Delay linearity (f _{in} ≤ 24.9 kHz) 11.		11.	11.16 ns maximum		
Channel-to-channel	mismatch (f _{in} ≤ 24.9 kHz	<u>z)</u>			
Gain	±0.116 dB maximum				
Delay	166.67 ns/kHz maximum				
Module-to-module mismatch (f _{in} ≤ 24.9 kHz)					

8. Range equals 21.9 mA

Delay	166.67 <i>ns</i> $\int kHz + \frac{1}{f_M}$			
Attenuation @ 2 x oversample rate (23° C)		104 dB		
Idle Channel Noise				
Comb filter with first no	otch at f _s			
f _s = 50 kS/s		13	130 nA	
f _s = 10 kS/s			64	↓nA
f _s ≤1 kS/s			39 nA	
Butterworth filter, f _s = 5	i0 kS/s			
f _c = 4 kHz				68 nA
f _c = 1 kHz				42 nA
f _c = 125 Hz				30 nA

Note The noise specifications assume the NI-9253 is using the internal master timebase frequency of 12.8 MHz.

Crosstalk (CH to CH)		
f _{in} < 100 Hz	100 dB	

A

f _{in} < 15 kHz 90			dB	
Normal mode rejection ratio (NMRR) usin	g internal or ext	ernal	master timebase of 12.8 MHz ^{[9]9}	
60 S/s, f _{in} = 60 Hz ± 1 Hz		35 dB minimum		
50 S/s, f _{in} = 50 Hz ± 1 Hz			33 dB minimum	
10 S/s, f _{in} = 50 Hz/60 Hz ± 1 Hz			35 dB minimum	
Normal mode rejection ratio (NMRR) usin	g external maste	er tim	nebase of 13.1072 MHz ^[9]	
60 S/s, f _{in} = 60 Hz ± 1 Hz			34 dB minimum	
50 S/s, f _{in} = 50 Hz ± 1 Hz			33 dB minimum	
10 S/s, f _{in} = 50 Hz/60 Hz ± 1 Hz			35 dB minimum	
Common mode sensitivity to earth groun	d			
$f_{in} \le 60 \text{ Hz}$ $0.1 \text{ nA/V}_{peak}^{10}$				
Field side power detection threshold				
Minimum 7.2 V		7.2 V	11	
Maximum 8.1		8.1 V	12	

- 9. Only applicable for comb filter.
- 10. This value is how much the module readings change when common mode voltage is applied between the channels and earth ground.

Input Limit Programming Resolution 30.5176 μA	
---	--

Calibration

You can obtain the calibration certificate and information about calibration services for the NI-9253 at <u>ni.com/calibration</u>.

Calibration interval	2 years
----------------------	---------

11. Field side power will never be detected if it is below this value.

12. Field side power will always be detected if it is above this value.