PXIe-4151 Specifications

2024-12-18

n

Contents

PXIe-4151 Specifications	
--------------------------	--

PXIe-4151 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Warranted* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature¹ of 23 °C \pm 5 °C.
- Chassis with \geq 38 W slot cooling capacity.²
 - For chassis with slot cooling capacity = 38 W, fan speed set to HIGH
- Calibration interval of 2 years.
- Warm-up time of 30 minutes.
- Self-calibration performed within the last 24 hours.
- NI-DCPower Aperture Time is set to 1 power-line cycle (PLC).
- 1. The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).
- 2. For increased capability, NI recommends installing the PXIe-4151 in a chassis with slot cooling capacity ≥58 W.

Instrument Capabilities

DC voltage ranges	6 V, 20 V
DC current ranges	100 mA, 1 A, 25 A

Note Maximum current allowed in the 25 A range is dependent on ambient temperature and chassis cooling capacity. Refer to the following figures for additional detail.

Figure 1. PXIe-4151 Quadrant Diagram, T_{ambient} = 0 °C to 40 °C

Figure 2. PXIe-4151 Quadrant Diagram, T_{ambient} >40 °C

Available DC output power ³	300 W

Note An auxiliary power source with sufficient capacity is required for operation. Refer to *Power Requirements* for additional details.

Related reference:

• Power Requirements

3. Power limit defined by voltage measured between HI and LO terminals.

Voltage

Damas	Resolution	Noise (0.1 Hz to 10 Hz,	Accuracy ± (% of Voltage + Offset) ⁴	Tempco ⁵ ± (% of Voltage + Offset)/°C
Range	Limited)	peak-to-peak, typical)	$T_{\text{ambient}} 23 \text{ °C} \pm 5 \text{ °C}, T_{\text{cal}}^{6} \pm 5 \text{ °C}$	T _{ambient} 0 °C to 55 °C, T _{cal} ± 5 °C
6 V	1 µV	10 µV	0.022% + 500 μV	0.001% + 25 μV
20 V	10 µV	40 µV	0.024% + 2 mV	0.001% + 65 μV

Table 1. Voltage Programming and Measurement Accuracy/Resolution

Related reference:

- <u>Remote Sense</u>
- Load Regulation

Current

Table 2.	Current Pro	gramming	and Measu	rement Acc	curacy/Reso	lution
	current re	'srunning	und medsu		suracy/ricso	lucion

Resolution Range (Noise Limited)		Noise (0.1 Hz to 10 Hz,	Accuracy ± (% of Current + Offset) ⁷	Tempco ⁸ ± (% of Current + Offset)/°C
		peak-to-peak, typical)	$T_{ambient} 23 \degree C \pm 5 \degree C, T_{cal}^9 \\ \pm 5 \degree C$	T _{ambient} 0 °C to 55 °C, T _{cal} ± 5 °C
100 mA	10 nA	200 nA	0.03% + 30 μA	0.0015% + 1.5 μA
1 A	100 nA	2 μΑ	0.03% + 300 μA	0.0015% + 15 μA
25 A	10 µA	160 µA	0.065% + 2 mA	0.0035% + 375 μA

- 4. Refer to the *Remote Sense* and *Load Regulation* sections for additional accuracy derating and conditions.
- 5. Temperature coefficient applies beyond 23 °C \pm 5 °C ambient within \pm 5 °C of T_{cal}.
- 6. T_{cal} is the internal device temperature recorded by the PXIe-4151 at the completion of the last self-calibration.
- 7. Refer to the *Remote Sense* and *Load Regulation* sections for additional accuracy derating and conditions.
- 8. Temperature coefficient applies beyond 23 °C \pm 5 °C ambient within \pm 5 °C of T_{cal}.
- 9. T_{cal} is the internal device temperature recorded by the PXIe-4151 at the completion of the last self-calibration.

Related reference:

- <u>Remote Sense</u>
- Load Regulation

Noise

Wideband source noise ¹⁰	<20 mV peak-to-peak, typical
-------------------------------------	------------------------------

The following figures illustrate measurement noise as a function of measurement aperture time for the PXIe-4151.

Figure 3. Voltage RMS Noise Versus Aperture Time, Nominal

10. 10 Hz to 20 MHZ bandwidth, measured with 1 μF load capacitance at the end of 1 m shielded cable. PXIe-4151 configured for normal transient response.

Figure 4. Current RMS Noise Versus Aperture Time, Nominal

Note When the aperture time is set to two power-line cycles (PLCs), measurement noise differs slightly depending on whether the Power Line Frequency property is set to 50 Hz or 60 Hz.

Note Use the DC Noise Rejection property to configure normal or secondorder DC noise rejection.

Settling Time and Transient Response

Note Settling time is measured as the time to settle to within 0.1% of step amplitude, PXIe-4151 configured for fast transient response.

Settling Time		
Voltage mode, ≤18 V step, unloaded	<4.2 ms, typical	
Current mode, full-scale step, 25 A range	<600 µs, typical	

Current mode, full-scale step, 1 A range	<320 µs, typical
Current mode, full-scale step, 100 mA range	<1.2 ms, typical

Note Settling time specifications for voltage mode derived with current limit set to ≥20% of the selected current limit range.

Note Settling time specifications for current mode (all ranges) derived with voltage limit set to ≥2 V, resistive load set to 1 V/selected current range.

Transient Response		
25 A range	<250 μs, typical to recover within ±300 mV	
1 A range	<50 μs, typical to recover within ±10 mV	

Note Transient response is the time to recover within the stated recovery band after a load current change from 50% to 100% of range, PXIe-4151 configured for fast transient response.

Remote Sense

Voltage accuracy	Add 10 μ V per volt of lead drop per ohm of corresponding sense lead resistance to voltage accuracy specifications.
Maximum sense lead resistance	100 Ω

Maximum lead drop per lead	1 V, maximum 20 V between HI and LO terminals
-------------------------------	---

Load Regulation

Voltage, local sense ¹¹	5 μV/mA (5 mΩ), nominal; 11 μV/mA (11 mΩ), maximum
Voltage, remote sense	Error included in accuracy specifications.
Current	Error included in accuracy specifications.

Auxiliary Power Input Line Regulation

Note Auxiliary power input line regulation is the impact to voltage and current accuracy specifications as a result of change in voltage at the auxiliary power input.

Voltage	Error included in accuracy specifications.
Current	Error included in accuracy specifications.

Isolation

Isolation voltage, any channel I/O pin ¹² to earth ground	150 V DC, CAT I

11. Measured between HI and LO terminals at the module output connector.

12. Channel I/O pins include the HI, LO, HI Sense and LO Sense terminals. The Shield GND terminals of the output connector are connected to chassis ground and not considered channel I/O pins.

Tra	ansient overvoltage	800 V peak

Caution Isolation voltage ratings apply to the voltage measured between any channel pin (HI, LO, HI Sense, LO Sense) and the chassis ground. When operating channels in series or floating on top of external voltage references, ensure that no terminal exceeds this rating.

Caution Les tensions nominales d'isolation s'appliquent à la tension mesurée entre n'importe quelle broche de voie et la masse du châssis. Lors de l'utilisation de voies en série ou flottantes en plus des références de tension externes, assurez-vous qu'aucun terminal ne dépasse cette valeur nominale.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are for other circuits not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Protection

Absolute maximum voltage		
Between any channel I/O pin ¹³ and LO		60 V
Any AUX I/O pin to ground 5 V		
AUX Power In + to AUX Power In – ±60 V		V

13. Channel I/O pins include the HI, LO, HI Sense and LO Sense terminals. The Shield GND terminals of the output connector are connected to chassis ground and not considered channel I/O pins.

AUX Power In – to ground	±1 V

Output channel protection		
Overcurrent or overvoltage	Automatic shutdown, output disconnect relay opens	
Reverse voltage protection	Automatic shutdown, output disconnect relay opens	
Down programmer overload	Automatic shutdown, output disconnect relay opens	
Overtemperature	Automatic shutdown, output disconnect relay opens	

AUX Power protection	
Overvoltage or undervoltage	Automatic shutdown, output disconnect relay opens
Overcurrent	Automatic shutdown, output disconnect relay opens, non-accessible fuse as backup protection

Measurement and Update Timing

Available sample rates ¹⁴ (1	(1.8 MS/s)/N, nominal
---	-----------------------

where

14. When sourcing while measuring, both the Source Delay and Aperture Time affect the sampling rate. When taking a measure record, only the Aperture Time affects the sampling rate.

- S is samples
 N = 1, 2, 3, ... 2²⁴

Sample rate accuracy	Equal to PXIe_CLK100 accuracy, nominal
Maximum measure rate to host	1.8 MS/s per channel, continuous, nominal
Maximum source update rate ¹⁵	100,000 updates/s, nominal

Input trigger to	
Source event delay	10 μs, nominal
Source event jitter	2 μs peak-to-peak, nominal
Measure event jitter	2 μs peak-to-peak, nominal

Triggers

Input Triggers

Types	Start, Source, Sequence Advance, Measure

Sources (PXI trigger lines <07> ¹⁶		
Polarity	Active high (not configurable)	

15. As the Source Delay is adjusted, or if advanced sequencing is used, maximum update rates vary.

Minimum pulse width	100 ns
---------------------	--------

Destinations ¹⁷ (PXI trigger lines <07>) ¹⁸		
Polarity	Active high (not configurable)	
Pulse width	>200 ns	

Output Triggers (Events)

Types Source Complete, Sequence Iteration Complete, Sequence Engine Done, Measure Complete

Destinations (PXI trigger lines <07>) ¹⁹		
Polarity	Active high (not configurable)	
Pulse width	>230 ns	

Physical

Dimensions	3U, two-slot, PXI Express/CompactPCI Express module

- 16. Pulse widths and logic levels are compliant with *PXI Express Hardware Specification Revision 1.0 ECN 1*.
- 17. Input triggers can come from any source (PXI trigger or software trigger) and be exported to any PXI trigger line. This allows for easier multi-board synchronization regardless of the trigger source.
- 18. As the Source Delay is adjusted, or if advanced sequencing is used, maximum update rates vary.
- 19. As the Source Delay is adjusted, or if advanced sequencing is used, maximum update rates vary.

	4.0 cm × 13.0 cm × 21.6 cm (1.6 in. × 5.1 in. × 8.5 in.)
Weight	650 g (22.9 oz)

Front Panel Connectors		
Output	OMNIMATE Hybrid, 7.62 mm (4 position), 2.54 mm (6 position)	
AUX I/O	MICRO COMBICON - DFMC 0, 5, 2.54 mm (8 position)	
AUX Power In	MEGA-FIT RECEPTACLE, 5.7 mm, (4 position)	

Calibration Interval

Recommended calibration interval	2 years

Power Requirements

PXIe chassis, +3.3 V	1 A, maximum
PXIe chassis, +12 V	1 A, maximum
Auxiliary power source input	45.6 V DC to 50.4 VDC, 9 A maximum

Note Current drawn from the auxiliary power source depends on power

delivered from the instrument to the load. Refer to the PXIe-4151 user manual for additional details on power budgeting when multiple modules are powered from a single auxiliary power source.

Environmental Characteristics

Temperature		
Operating		0 °C to 55 °C ^{20,21}
Storage		-40 °C to 71 °C
Humidity		
Operating	10% RH to 90% RH, noncondensing	
Storage	5% RH to 95% RH, noncondensing	

Pollution Degree	2
Maximum Altitude	2000 m

Shock and Vibration		
Operating Vibration	5 Hz to 500 Hz, 0.3 g RMS	

- 20. Not all chassis can achieve this ambient temperature range. Refer to PXI chassis specifications to determine the ambient temperature ranges your chassis can achieve.
- 21. Maximum ambient temperature deratings apply when operating the 25 A range above certain current levels. Refer to the *Instrument Capabilities* section for additional details.

Non-Operating Vibration	5 Hz to 500 Hz, 2.4 g RMS
Operating Shock	30 g, half-sine, 11 ms pulse

Related reference:

• Instrument Capabilities